которое в механике рассматривалось как сплошное, при использовании новых методов исследований оказывалось сложной системой громадного числа непрерывно движущихся молекул. Молекулы оказались состоящими из еще более мелких частиц — атомов, причем в некоторых типах молекул число атомов оказалось очень большим. В свою очередь атомы оказались сложными системами, состоящими из электронов и ядер, а сами ядра — состоящими из различных частиц, о которых будет рассказано в последнем томе нашего учебника.
Конечно, все, что происходит и наблюдается в макромире, взаимосвязано с состоянием частиц микромира и с их изменениями. Изменения теплового состояния тел — температурные изменения и переход тел из одного состояния в другое, например из твердого в жидкое,— оказались связанными, в основном, с изменениями движения молекул и их взаимного расположения. Химические превращения, наблюдаемые в микромире, связаны с изменениями атомного состава молекул.
Строение молекул или атомов, а также движения атомов, составляющих молекулы, и движения частиц, образующих атомы, проявляются в макромире в электрических, магнитных, оптических и других явлениях. Эта необычайная сложность микромира представила бы непреодолимые трудности для его познания, если бы не удалось разумно расчленить задачу. Оказывается возможным выделить более простые явления, обусловленные, например, молекулярными движениями, при изучении которых можно пренебречь более тонкими процессами микромира; далее следует перейти к изучению более тонких процессов и движений, связанных со структурой атомов и молекул, оставляя в стороне внутриядерные процессы, и т. д.
Таким образом, переходя от изучения более простых процессов и движений к более сложным, мы постепенно составляем себе все более детальную и глубокую картину микромира. Начнем с таких явлений, при которых можно не обращать внимания на внутреннюю структуру молекул, на движение составляющих молекулы атомов и на еще более гонкие внутриатомные и внутриядерные процессы и движения. Сюда относится обширная группа тепловых явлений, при которых молекулы можно рассматривать как неизменные малые тельца.
Итак, приступая к изучению микромира, ограничимся сначала изучением движения и расположения молекул, не рассматривая их внутреннего строения.
413
§ 216. Внутренняя энергия с точки зрения молекулярной теории. В предыдущей главе мы пришли к выводу, что, кроме механической энергии некоторой системы тел, зависящей от их скоростей (кинетическая энергия) и от их взаимного расположения (потенциальная энергия), каждому из тел, составляющих систему, присуща его внутренняя энергия, зависящая от состояния этого тела. Теперь можно уточнить понятие внутренней энергии. Внутренняя энергия есть кинетическая и потенциальная энергия частиц, составляющих микромир: молекул, из которых состоят макротела, атомов, из которых состоят молекулы, электронов и других частиц, составляющих атомы. В предыдущем параграфе мы указали, что в основном тепловые явления можно связать только с движением и расположением молекул как неизменных простых частиц. Поэтому, изучая простые явления, мы будем интересоваться только частью внутренней энергии тел, а именно, только кинетической энергией молекул, зависящей от скоростей их беспорядочного движения, и потенциальной энергией молекул, зависящей от их взаимного расположения.
В случае газов изменение внутренней энергии есть, в основном, изменение кинетической энергии беспорядочного движения их молекул; дело в том, что в газах взаимодействие между молекулами мало и изменениями потенциальной энергии при движении молекул можно пренебречь. В жидкостях и твердых телах взаимодействие молекул весьма велико, и изменение расстояния между молекулами резко изменяет потенциальную энергию их взаимодействия. Поэтому в случае жидких и твердых тел изменение внутренней энергии состоит и в изменении кинетической энергии беспорядочного движения молекул, и в изменении потенциальной энергии их взаимодействия. далее 


Используются технологии uCoz